Ludovic Brucker, Scientist III

Ludovic Brucker


NASA Goddard
Bldg 33, Room A214
Greenbelt, MD 20771

Phone: 301-614-6748
Personal Url:


Dr. Brucker's research focuses on understanding the passive microwave emission of snow-covered polar and sub-polar regions (i.e. sea ice, ice cap and terrestrial snowpacks) to provide climate-related variables. The goal of his work is to contribute to the comprehension of the relationships between microwave space-borne observations and snow physical properties using modeling approaches.

Re: Aquarius weekly-polar-gridded products - To allow for an efficient use of the Aquarius data over the polar regions, and to move forward our understanding of the L-band observations of ice sheet, sea ice, permafrost, and polar oceans, weekly-polar-gridded products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS) are available. They are produced on the version 2.0 Equal-Area Scalable Earth (EASE) grid, with a grid cell resolution of 36 km, and distributed by the US National Snow and Ice Data Center.

Download Aquarius weekly polar-gridded products at


Dr. Brucker joined GESTAR as a Scientist I in May 2011. He is now a Scientist III. He obtained a M.Sc. in Physics from the University of Clermont-Ferrand, France in 2006 and his Ph.D in Environmental Earth Science System in October 2009 from the Laboratoire de Glaciologie et Geophysique de l'Environnement (LGGE), Grenoble University/CNRS, France. In 2015, he earned a Profesionnal Certificate in Project Management from Georgetown University, Washington, DC. Dr. Brucker studies multiple elements of the cryosphere (ice sheets, sea ice, seasonnal snowpacks, and permafrost) using microwave remote sensing techniques and microwave emission modeling. He participated in several polar deployments:

- In northern Quebec during the 2008 International Polar Year;
- In West Antarctica for the 2011 Satellite Era Accumulation Traverse (SEAT) (;
- In Greenland in 2013 and 2014 (
- At the Canadian High Arctic Research Station in Cambridge Bay, Nunavut in 2015 and 2016.

In press:
Larue, F., Royer, A., De Seve, D., Langlois, A., Roy, A., and Brucker, L. Validation analysis of the GlobSnow-2 database over an eco-climatic latitudinal gradient in Eastern Canada. Remote Sensing of Environment (RSE-D-16-00637).
Leigh Miller, O., Solonon, D. K., Miège, C., Koenig, L., Forster, R. R., Montgomery, L. N., Schmerr, N., Ligtenberg, S., Legtchenko, A., and Brucker, L. Hydraulic conductivity of a firn aquifer system in southeast Greenland determined with a heated piezometer. Front. Earth Sci. - Cryospheric Sciences (234369).

[33] Poinar, K., Joughin, I., Lilien, D., Brucker, L., Kehrl, L., and Nowicki, S. Drainage of Southeast Greenland firn aquifer water through crevasses to the bed. Front. Earth Sci. - Cryospheric Sciences, Vol. 5, doi:10.3389/feart.2017.00005, 2017.
[32] Royer, A., Roy, A., Montpetit, B., Saint-Jean-Rondeau, O., Picard, G., Brucker, L., and Langlois, A. Comparison of commonly-used microwave radiative transfer models for snow remote sensing. Remote Sensing of Environment, Vol. 190, pp. 247-259, doi:10.1016/j.rse.2016.12.020, 2017.
[31] Langlois, A., Johnson, C.-A., Montpetit, B., Royer, A., Blukacz-Richards, E.A., Neave, E., Dolant, C., Roy, A., Arhonditsis, G., Kim, D.-K., Kaluskar, S., and Brucker, L. Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: A context for Peary caribou habitat in the Canadian Arctic. Remote Sensing of Environment Vol. 189, pp. 84-95, doi:10.1016/j.rse.2016.11.006, 2017.
[30] Dinnat, E., and Brucker, L. Improved Sea Ice Fraction Characterization for L-band Observations by the Aquarius Radiometers. IEEE Transactions on Geoscience & Remote Sensing (10.1109/TGRS.2016.2622011).
[29] Miège, C., Forster, R., Brucker, L., Koenig, L., Solomon, D. K., Paden, J., Box, J., Burgess, E., Miller, J., McNerney, L., Brautigam, N., Fausto, R., and Gogineni, S. P. Spatial extent and temporal variability of the Greenland firn aquifer detected by ground and airborne radars. J. Geophys. Res. Earth Surf., 121, doi:10.1002/2016JF003869.
[28] Cullather, R. I., Lim, Y.-K., Boisvert, L., Brucker, L., Lee, J., and Nowicki, S. Analysis of the warmest Arctic winter, 2015–2016, Geophys. Res. Lett., 43, 10, 808–10,816, doi:10.1002/2016GL071228, 2016.
[27] Boutin, J., Chao, Y., Asher, W. E., Delcroix, T., Drucker, R., Drushka, K., Kolodziejczyk, N., Lee, T., Reul, N., Reverdin, G., Schanze, J., Soloviev, A., Yu, L., Anderson, J., Brucker, L., Dinnat, E., Santos-Garcia, A., Jones, W. L., Maes, C., Meissner, T., Tang, W., Vinogradova, N.,Ward, B. Satellite and In Situ Salinity: Understanding Near-Surface Stratification and Subfootprint Variability. Bull. Amer. Meteor. Soc., 97, 1391–1407, doi: 10.1175/BAMS-D-15-00032.1, 2016.
[26] Sokolov, A., Sokolov, N., Ims, R., Brucker, L., and Ehrich, D. Emergent Rainy Winter Warm Spells May Promote Boreal Predator Expansion into the Arctic. Arctic, vol. 69, no. 2, 121-129, doi:10.14430/arctic4559, 2016.
[25] Dolant, C., Langlois, A., Montpetit, B., Brucker, L., Roy, A., and Royer, A. Development of a rain-on-snow detection algorithm using passive microwave radiometry. Hydrological Processes, 30, 3184-3196, doi:10.1002/ hyp.10828, 2016.
[24] Bokhorst, S., Højlund Pedersen, S., Brucker, L., Essery, R., Anisimov, O., Bjerke, W., Brown, R., Ehrich, D., Heilig, A., Niila Inga Leavas; Ingvander, S., Johansson, C., Johansson, M., Ingibjörg Svala Jónsdóttir; Macelloni, G., Mariash, H., Mclennan, D., Rosqvist, N., Sato, A., Savela, H., Schneebeli, M., Sokolov, A., Sokratov, S., Terzago, S., Vikhamar-Schuler, D., Williamson, S. N., Qiu, Y., and Callaghan, T. V. Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling and impacts. Ambio, doi:10.1007/s13280-016-0770-0, 2016.
[23] Koenig, L., Forster, R., Brucker, L., and Miller, J. Remote Sensing of Accumulation over the Greenland and Antarctic Ice Sheets. Remote Sensing of the Cryosphere, Ed. Marco Tedesco, Wiley, 408 pages, 2015.
[22] Roy, A., Royer, A., Derksen, C., Brucker, L., Langlois, A., Mialon, A., and Kerr, Y. Evaluation of Spaceborne L-band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.8, no.7, 4442-4459, doi:10.1109/JSTARS.2015.2476358, 2015.
[21] Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S. Heygster, G. Lavergne, T. Sørensen, A. Saldo, R. Dybkjær, G., Brucker, L., and Shokr, M. Sea ice algorithms inter-comparison and evaluation: towards further identification of challenges and optimal approach using passive microwave observations. The Cryosphere, 9, 1797-1817, doi:10.5194/tc-9-1797-2015, 2015.
[20] Tan S., Aksoy, M., Brogioni, M., Macelloni, G., Durand, M., Jezek, K.C., Wang, T., Tsang, L., Johnson, J. T., Drinkwater, M. R., and Brucker, L. Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 GHz to 2 GHz. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 8, no. 7, 3681-3691, doi: 10.1109/JSTARS.2015.2403286, 2015.
[19] Vernieres, G., Kovach, Keppenne, C., R., Akella, S., Brucker, L., and Dinnat, E. The Impact of the Assimilation of Aquarius Sea Surface Salinity Data in the GEOS Ocean Data Assimilation System. J. Geophys. Res. Oceans, 119 doi:10.1002/2014JC010006, 2014.
[18] Tarabalka, Y., Charpiat, G., Brucker, L., and Menze, B. Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint. IEEE Transactions on Image Processing, vol.23, no.9, 3829-3840, doi: 10.1109/TIP.2014.2336544, 2014.
[17] Brucker, L., Dinnat, E., and Koenig, L. Weekly-gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions, part 1: Product description, The Cryosphere, 8, 905-913, doi:10.5194/tc-8-905-2014, 2014.
[16] Brucker, L., Dinnat, E., and Koenig, L. Weekly-gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions, part 2: Initial product analysis, The Cryosphere, 8, 915-930, doi:10.5194/tc-8-915-2014, 2014.
[15] Brucker, L., Dinnat, E., Picard, G., and Champollion, N. Effect of snow surface metamorphism on Aquarius L-band radiometer observations at Dome C, Antarctica. IEEE Transactions on Geoscience & Remote Sensing, vol.52, no.11, 7408-7417, doi: 10.1109/TGRS.2014.2312102, 2014.
[14] Brucker, L., Cavalieri, D. J., Markus, T., and Ivanoff, A., NASA Team 2 Sea Ice Concentration Retrieval Uncertainty. IEEE Transactions on Geoscience & Remote Sensing, vol.52, no.11, 7336-7352, doi: 10.1109/TGRS.2014.2311376, 2014.
[13] Koenig, L., Miège, C., Forster, R., and Brucker, L. Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer, Geophys. Res. Lett., 41, 81-85, doi:10.1002/2013GL058083, 2014.
[12] Picard, G., Brucker, L., Roy, A., Dupont, F., Fily, M., Royer, A., and Harlow, C.: Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model, Geosci. Model Dev., 6, 1061-1078, doi:10.5194/gmd-6-1061-2013, 2013.
[11] Brucker, L., and Markus, T. Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data, J. Geophys. Res. Oceans, 118(6), 2892–2905, doi:10.1002/jgrc.20228, 2013.
[10] Tarabalka, Y., Brucker, L., Ivanoff, A., and Tilton, J. C. Shape-constrained segmentation approach for Arctic multiyear sea ice floe analysis. IEEE International Geoscience and Remote Sensing Symposium, 4958-4961, doi:10.1109/IGARSS.2012.6352499, 2012.
[9] Cavalieri, D. J., Markus, T., Ivanoff, A., Miller, J. A., Brucker, L., Sturm, M., Maslanik, J. A., Heinrichs, J. F., Gasiewski, A. J., Leuschen, C., Krabill, W., and Sonntag, J. A comparison of snow depth on sea ice retrievals using airborne atlimeters and an AMSR-E simulator. IEEE Transactions on Geoscience & Remote Sensing, Vol. 50, No. 8, 3027-3040, 2012.
[8] Brucker, L., Royer, A., Picard, G., Langlois, A., and Fily, M. Hourly simulations of the microwave brightness temperature of seasonal snow in Quebec, Canada, using a coupled snow evolution-emission model. Remote Sensing of Environment, Vol. 115, Issue 8, 1966-1977, 2011.
[7] Brucker, L., Picard, G., Arnaud, L., Barnola, J.M., Schneebeli, M., Brunjail, H., Lefebvre, E., and Fily, M. Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements. Journal of Glaciology, Vol. 57, No. 201, 171-182, doi:10.3189/002214311795306736, 2011.
[6] Brucker, L., Picard, G. and Fily, M., Snow grain size profile deduced from microwave snow emissivities in Antarctica. Journal of Glaciology, Vol. 56, No. 197, 514-524, doi:10.3189/002214310792447806, 2010.
[5] Langlois, A., Royer, A., Montpetit, B., Picard, G., Brucker, L., Arnaud, L., P. Harvey-Collard, Goïta, K. and Fily, M. On the relationship between snow grain morphology and in-situ near infrared calibrated reflectance photographs. Cold Regions Science and Technology, Vol. 61, Issue 1, 34-42, 2010.
[4] Lacroix, P., Legrésy, B., Rémy, F., Blarel, F., Picard, G. and Brucker, L. Rapid change of snow surface properties at Vostok, East Antarctica, revealed by altimetry and radiometry. Remote Sensing of Environment, Vol. 113, Issue 12, 2633-2641, 2009.
[3] Langlois, A., Brucker, L., Kohn, J., Royer, A., Derksen, C., Cliche, P., Picard, G., Willemet, J.-M. and Fily, M. Simulation of snow water equivalent (SWE) using thermodynamic snow models in Québec, Canada. Journal of Hydrometeorology, Vol. 10, No. 6, 1447-1463, 2009.
[2] Picard, G., Brucker, L., Fily, M., Gallée, H. and Krinner, G. Modeling time series of microwave brightness temperature in Antarctica. Journal of Glaciology, Vol. 55, No. 191, 2009.
[1] Magand, O., Picard, G., Brucker, L., Fily, M. and Genthon, C. Snow melting bias in microwave mapping of Antarctic snow accumulation. The Cryosphere, 2(2):109-115, 2008.