Sergey Korkin, Senior Scientist, Earth Sciences

Sergey Korkin

Contact Info

NASA Goddard
Bldg 33, Room C308
Greenbelt, MD 20771
 
Phone: 301-614-5153
Email: skorkin@usra.edu

Research Interests

Numerical simulation of polarized light scattering in Earth atmosphere.
Scientific software development.

Biography

2019-present: Senior Scientist, Earth Sciences, USRA GESTAR
2011-19: Scientist, Earth Sciences, USRA GESTAR
2010-11: Research Associate, University of Maryland Baltimore County (UMBC)
2009 PhD in Technical Science from Moscow Power Engineering Institute (MPEI), Moscow, Russia.
2006 MSc in Technics and Technology from MPEI.
2004 BSc in Technics and Technology from MPEI.

*********************
SELECTED GRANTS (PI):
*********************

Title: Surface Polarized Reflectance Analysis Using Space Lidar: Proof of Concept
Call: USRA IRAD Proposal
Performance period: 2019

Title: Account for Atmospheric Curvature in the USRA GESTAR Developed Radiative Transfer Codes SORD and IPOL
Call: USRA IRAD Proposal
Performance period: 2018

Title: Fast Polarized RT Code for V3 AERONET Reprocessing.
Call: NASA Research Opportunities in Space and Earth Sciences (ROSES) - 2014, “Remote sensing theory for Earth science”.
Performance period: 2015–2017

**********************
SELECTED PUBLICATIONS:
**********************

Korkin S., Lyapustin A., 2019: Matrix exponential in C/C++ version of vector radiative transfer code IPOL, Journal of Quantitative Spectroscopy and Radiative Transfer, 227, 106-110;

Giles D., Sinyuk A., Sorokin M., Schafer J., Smirnov A., Slutsker I., Eck T., Holben B., Lewis J., Campbell J., Welton E., Korkin S., and Lyapustin A., 2018: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmospheric Measurement Techniques, 12, 169-209;

Lyapustin A., Wang Y., Korkin S., and Huang D., 2018: MODIS collection 6 MAIAC algorithm, Atmospheric Measurement Techniques, 11, 5741-5765;

Korkin S., Lyapustin A., Sinyuk A., Holben B., and Kokhanovsky A., 2017: Vector radiative transfer code SORD: performance analysis and quick start guide, Journal of Quantitative Spectroscopy and Radiative Transfer, 200, 295-310;

Korkin S., Lyapustin A., Sinyuk A., and Holben B. Performance of the dot product function in radiative transfer code SORD, Proceedings of SPIE 2016, 10007, 1000705;

Korkin S., Lyapustin A., Sinyuk A., and Holben B. Accuracy of RT code SORD for realistic atmospheric profiles, Proceedings of SPIE 2016, 10001, 100010B;

Korkin S., Lyapustin A., Sinyuk A., and Holben B. A new code SORD for simulation of polarized light scattering in the Earth atmosphere, Proceedings of SPIE 2016, 9853, 985305;

Emde C., Barlakas V., Cornet C., Evans F., Korkin S., Ota Y., Labonnote L. C., Lyapustin A., Macke A., Mayer B., Wendisch M., 2015: IPRT polarized radiative transfer model intercomparison project – Phase A, Journal of Quantitative Spectroscopy and Radiative Transfer, 164, 8–36;

Lyapustin A., Wang Y., Xiong X., Meister G., Platnick S., Levy R., Franz B., Korkin S., Hilker T., Tucker J., Hall F., Sellers P., Wu A., Angal A.: Science impact of MODIS C5 calibration degradation and C6+ improvements, Atmospheric Measurements and Techniques 2014, 7, 4353–4365;

Korkin S., Lyapustin A., and Rozanov V. APC: A new code for Atmopsheric Polarization Computations. Journal of Quantitative Spectroscopy and Radiative Transfer 2013, 127, 1–11;

Korkin S., Lyapustin A., and Rozanov V. Modifications of discrete ordinates method for computations with high scattering anisotropy: comparative analysis. Journal of Quantitative Spectroscopy and Radiative Transfer 2012, 113, 2040–2048;

Lyapustin A., Wang Y., Laszlo I., Hilker T., Hall F., Sellers P., Tucker C., Korkin S. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3.Atmospheric correction. Remote Sensing of Environment 2012, 127, 385–393;

Lyapustin A., Korkin S., Wang Y., Quayle B., and Laszlo I. Discrimination of biomass burning smoke and clouds in MAIAC algorithm. Atmospheric Chemistry and Physics 2012, 12, 9679–9686;

Lyapustin A., Wang Y., Laszlo I., and Korkin S. Improved cloud and snow screening in MAIAC aerosol retrievals using spectral and spatial analysis. Atmospheric Measurment Techniques 2012, 5, 843–850;

Korkin S., Lyapustin A., and Marshak A. On the accuracy of double scattering approximation for atmospheric polarization computations. Journal of Quantitative Spectroscopy and Radiative Transfer 2011, 113, 172–181.